Experimental Investigation of Performance Enhancement of a Vapor Compression Refrigeration System by Vortex Tube Cooling

Author:

Puangcharoenchai Phupoom1,Kachapongkun Pongsakorn1,Rattanadecho Phadungsak2,Prommas Ratthasak1

Affiliation:

1. Rattanakosin College for Sustainable Energy and Environment, Rajamangala University of Technology Rattanakosin, Phutthamonthon, Nakhon Pathom 73170, Thailand

2. Center of Excellence in Electromagnetic Energy, Utilization in Engineering (CEEE), Department of Mechanical Engineering, Faculty of Engineering, Thammasat University (Rangsit Campus), Klong Luang, Pathumthani 12120, Thailand

Abstract

This study aimed to analyze the difference in operation of the vapor compression refrigeration (VCR) system with vortex tube cooling. By using varied loads, experiments were conducted on the evaporator section of a vapor compression refrigeration system. In an attempt to improve the use of subcooling for the refrigeration, the effect of subcooling of refrigerant by vortex tube cooling was likewise examined. The test conditions included various loads (25%, 50%, 75% and 100%) and cold mass fractions (25%, 50% and 75%). This research described coefficient of performance (COP) as one of the significant parameters, in addition to heat rejection and refrigerating effect. The ideal efficiency appeared to be with the cold mass fraction of 25% and load of 100%, as identified by the results. Consequently, the COP could be enhanced by 5.16% along with an approximately 4.36% decline in average power use. Improved guidelines for vapor compression refrigeration systems to enhance the operation of the system are an expected benefit of this study.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3