Affiliation:
1. Department of Mechanical Engineering, Amrita School of Engineering, Bengaluru Amrita Vishwa Vidyapeetham, India
Abstract
In this work, a set of computational investigation results of two-phase refrigerant flow through adiabatic capillary are presented. There are various sizes of capillary tubes that can be selected related to commercially available copper tubes. Earlier refrigerants and new refrigerants like R12, R22, R134a, R410A and R32 are used for the flow analysis. Homogeneous-equilibrium model is employed with user-defined properties of the refrigerants for computation using ANSYS CFX. Several important parameters can be predicted rapidly and accurately using this method such as refrigerant mass flow rate, vapor mass fraction, local Mach no. etc. The mean deviation in mass flow rate is found to be [Formula: see text]1.18% for the same length of capillary tube and the mean deviation of tube length is found to be [Formula: see text]1.48% for the same experimental mass flow rate with choked flow condition.
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献