An Investigation of Hydrological Effects on the Thermal Performance of Standing Column Well Using the in-situ Thermal Response Test

Author:

Chang Keun Sun1,Kim Young Jae23ORCID,Kim Min Jun3

Affiliation:

1. School of Mechanical and ICT Convergence Engineering, Sun Moon University, Chungnam 31460, Korea

2. Department of Environmental Bio-Chemical Engineering, Sun Moon University, Chungnam 31460, Korea

3. Graduate School of Sun Moon University, Chungnam 31460, Korea

Abstract

The standing column well (SCW) for ground source heat pump (GSHP) systems is a highly promising technology with its high heat capacity and efficiency. In this study, a large-scale thermal response tester has been built, which is capable of imposing a wide range of heat on the SCW ground heat exchangers and measuring time responses of their thermal parameters. Two standing column wells in one site but with different well hydrological and geological conditions are tested to study their effects on the thermal performances. Borehole thermal resistance ([Formula: see text]) and the effective thermal conductivity ([Formula: see text]) are derived from data obtained from the thermal response test (TRT) by using a line source method. Results show that the influence of groundwater movement on the thermal conductivity of the SCW is not very significant (3.6% difference between two different geological conditions). This indicates that results of one TRT measurement can be applied to other SCWs in the same site, with which considerable time and cost are saved. The increase of circulation flow rate enhances the ground thermal conductivity moderately (4.5% increase with flow rate increase of 45%), but the borehole thermal resistance is substantially lowered (about 25.9%).

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3