Study on Conceptual Design of a Solar Ejector Refrigeration System

Author:

Shovon Md. Khairul Bashar1,Kumar Raman Senthil1,Kim Tae Ho1,Kim Heuy Dong1ORCID

Affiliation:

1. Department of Mechanical Engineering, Andong National University, Gyeongsangbuk-do Andong-si 36729, South Korea

Abstract

The refrigeration system based on the conventional compression cycle consumes an enormous amount of high-grade energy. Using fossil fuels as the energy sources results in the addition of CO2 into the atmosphere and consequently stimulating higher greenhouse effect. The ejector refrigeration systems powered by renewable energy sources would be an effective alternative without increasing global CO2 footprint. In this study, the performance characteristics of a solar ejector refrigeration system working with R718 are analytically calculated by using a one-dimensional flow model. At the critical mode, the solar ejector-refrigeration system is analyzed at various working conditions such as condenser temperature, evaporator temperature, generator temperature, and ejector area ratio. The critical system performance is analyzed to meet any designated working conditions with a wide range of condenser temperatures. It is found that during the critical mode of operation, higher area ratio, higher evaporator temperature and lower generator temperature enhance the performance of the system. The minimum evaporator temperature, and the maximum generator temperature designed to acquire the required coefficient of performance value are also calculated.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3