Intelligent Classification of Metallographic Based on Improved Deep Residual Efficiency Networks

Author:

Huang Xiaohong1ORCID,Liu Yanping1ORCID,Qi Xueqian1ORCID,Song Yue2ORCID

Affiliation:

1. Hebei Provincial Key Laboratory of Industrial Intelligent Perception, College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, Hebei, P. R. China

2. Physical and Chemical Testing Center, HBIS Material Technology Research Institute, Shijiazhuang 050023, Hebei, P. R. China

Abstract

The recognition of steel microstructure images plays a crucial role in the metallographic analysis process. Although some progress has been made through the application of artificial intelligence algorithms, several challenges remain. First, existing algorithms exhibit weak nonlinear feature extraction capabilities and noticeable limitations. Second, they overlook the intrinsic noise and redundant interference present in microscopic images. To address these issues, this paper investigates the automatic recognition of metallographic tissues by leveraging residual structures in deep neural networks. An enhanced residual network model based on transfer learning is proposed, which utilizes the pre-trained weights from the ImageNet dataset to facilitate learning with small sample data. This network offers higher classification accuracy and higher F1 scores. In addition, a deep residual shrinkage network model based on an attention mechanism is proposed. This model incorporates an attention sub-network into the original residual module and employs a soft threshold function to eliminate redundant features, including noise. The proposed algorithms are evaluated against various convolutional neural networks using 20 types of metallographic test sets. The experimental results showed that both methods have high accuracy rates of 95% and 94.44%, respectively, and F1 scores of 0.9464 and 0.9419. While maintaining the complexity of the model, there has been a significant improvement in accuracy, and the models exhibit strong generalization capabilities. Our research contributes to enhancing production efficiency, strengthening quality control, and improving material performance through computer vision technology.

Funder

The National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3