Affiliation:
1. Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
2. Shenyang Aerospace University, Shenyang, P. R. China
Abstract
Fatigue driving is bringing more and more serious harm, but there are various reasons for fatigue driving, it is still difficult to test the driver’s fatigue. This paper defines a method to test driver’s fatigue based on the EEG, and different from other researches into fatigue driving, this paper mainly takes the fatigue features of EEG signals in fatigue state and uses wavelet entropy as the feature extraction method to analyze the features of wavelet entropy and spectral entropy features as well as the classification accuracy under the same classifier. The SVM is used to show the classifier’s results. The accuracy of the driver fatigue state monitoring using the wavelet entropy is 90.7%, which is higher than the use of spectral entropy as the characteristic accuracy rate of 81.3%. The results show that the frequency characteristics of EEG can be well applied to driving fatigue testing, but different frequency feature calculation methods will affect the classification accuracy.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献