Hand Gesture Recognition Based on sEMG Signal and Convolutional Neural Network

Author:

Su Ziyi1,Liu Handong1,Qian Jinwu1,Zhang Zhen1ORCID,Zhang Lunwei2

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai, P. R. China

2. School of Aerospace Engineering and Mechanics, Tongji University, 1239 Siping Road, Yangpu District, Shanghai, P. R. China

Abstract

Recently, deep learning has become a promising technique for constructing gesture recognition classifiers from surface electromyography (sEMG) signals in human–computer interaction. In this paper, we propose a gesture recognition method with sEMG signals based on a deep multi-parallel convolutional neural network (CNN), which solves the problem that traditional machine learning methods may lose too much useful information during feature extraction. CNNs provide an efficient way to constrain the complexity of feedforward neural networks by weight sharing and restriction to local connections. Sophisticated feature extraction is to be avoided and hand gestures are to be classified directly. A multi-parallel and multi-convolution layer convolution structure is proposed to classify hand gestures. Experiment results show that in comparison with five traditional machine learning methods, the proposed method could achieve higher accuracy.

Funder

Shanghai Science and Technology Development Foundation

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3