Affiliation:
1. School of Engineering and Technology, Asian Institute of Technology, Thailand
2. Department of Computer Science and Information Technology, University of Balochistan, Pakistan
3. Multimedia Information Research Division, National Institute of Informatics, Japan
Abstract
Rapid increase in video databases has forced the industry to have efficient and effective frameworks for video retrieval and indexing. Video segmentation into scenes is widely used for video summarization, partitioning, indexing and retrieval. In this paper, we propose a framework for scene detection mainly based on entropy and Speeded Up Robust Features (SURF) features. First, we detect the fade and abrupt boundaries based on frame entropy analysis and SURF features matching. Fade boundaries are smart indication of scenes beginning or ending in many videos and dramas, and are detected by frame entropy analysis. Before abrupt boundary detection, unnecessary frames which are obviously not abrupt boundaries, such as blank screens, high intensity influenced images, sliding credits, are removed. Candidate boundaries are detected to make SURF features efficient for abrupt boundary detection, and SURF features between candidate boundaries and their adjacent frames are used to detect the abrupt boundaries. Second, key frames are extracted from abrupt shots. We evaluate our key frame extraction with other famous algorithms and show the effectiveness of the key frames. Finally, scene boundaries are detected using sliding window of size K over the key frames in temporal order. In experimental evaluation on the TRECVID-2007 shot boundary test set, the algorithm for shot boundary achieves substantial improvements over state-of-the-art methods with the precision of 99% and the recall of 97.8%. Experimental results for video segmentation into scenes are also promising, compared to famous state-of-the-art techniques.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献