An Extension of the Gamma Test Statistics to Binary Variables and Some Applications

Author:

Maria Selvitella Alessandro123,Valdés Julio J.4

Affiliation:

1. Department of Mathematics and Statistics, University of Ottawa, 75 Laurier Avenue E, Ottawa, ON K1N 6N5, Canada

2. Departments of Psychiatry and Computing Science, University of Alberta, 116 St & 85 Avenue, Edmonton, AB T6G 2R3, Canada

3. Department of Mathematical Sciences, Purdue University Fort Wayne, 2101 E Coliseum Blvd, Fort Wayne, IN 46805, US

4. National Research Council, Data Science for Complex Systems Group, Canada

Abstract

In this paper, we discuss the problem of estimating the minimum error reachable by a regression model given a dataset, prior to learning. More specifically, we extend the Gamma Test estimates of the variance of the noise from the continuous case to the binary case. We give some heuristics for further possible extensions of the theory in the continuous case with the [Formula: see text]-norm and conclude with some applications and simulations. From the point of view of machine learning, the result is relevant because it gives conditions under which there is no need to learn the model in order to predict the best possible performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3