Semi-Automatic Extraction and Mapping of Farmlands based on High-Resolution Remote Sensing Images

Author:

Liu Dongsheng1ORCID,Han Ling23

Affiliation:

1. School of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China

2. School of Land Engineering, Chang’an University, Xi’an 710054, China

3. Key Laboratory of Land Consolidation in Shaanxi Province, Xi’an 710054, China

Abstract

Extraction of agricultural parcels from high-resolution satellite imagery is an important task in precision agriculture. Here, we present a semi-automatic approach for agricultural parcel detection that achieves high accuracy and efficiency. Unlike the techniques presented in previous literatures, this method is pixel based, and it exploits the properties of a spectral angle mapper (SAM) to develop customized operators to accurately derive the parcels. The main steps of the method are sample selection, textural analysis, spectral homogenization, SAM, thresholding, and region growth. We have systematically evaluated the algorithm proposed on a variety of images from Gaofen-1 wide field of view (GF-1 WFV), Resource 1-02C (ZY1-02C), and Gaofen-2 (GF-2) to aerial image; the accuracies are 99.09% of GF-1 WFV, 84.42% of ZY1-02C, 96.51% and 92.18% of GF-2, and close to 100% of aerial image; these results demonstrated its accuracy and robustness.

Funder

China Ministry of Education and Fundamental Research Funds for the Central Universities of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A deep insight into intelligent fractal-based image analysis with pattern recognition;Intelligent Fractal-Based Image Analysis;2024

2. Intelligent Positioning Algorithm Based on CSI Channel Mode;International Journal of Pattern Recognition and Artificial Intelligence;2023-03-11

3. Aboveground biomass estimation in forests with random forest and Monte Carlo-based uncertainty analysis;Ecological Indicators;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3