Comparison of Convolutional Neural Network for Classifying Lung Diseases from Chest CT Images

Author:

Mohan Ramya1ORCID,Rama A.1,Ganapathy Kirupa1

Affiliation:

1. Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India

Abstract

This paper proposes a convolutional neural network for diagnosing various lung illnesses from chest CT images based on a customized Medical Image Analysis and Detection network (MIDNet18). With simplified model building, minimal complexity, easy technique, and high-performance accuracy, the MIDNet-18 CNN architecture classifies binary and multiclass medical images. Fourteen convolutional layers, 7 pooling layers, 4 dense layers, and 1 classification layer comprise the MIDNet-18 architecture. The medical image classification process involves training, validating, and testing the MIDNet-18 model. In the Lung CT image binary class dataset, 2214 images as training set, 1800 images as validation set, and 831 as test set are considered for classifying COVID images and normal lung images. In the multiclass dataset, 6720 images as training sets belonging to 3 classes, 3360 images as validation sets and 601 images as test sets are considered for classifying COVID, cancer images and normal images. Independent sample size calculated for binary classification is 26 samples for each group. Similarly, 10 sample sizes are calculated for multiclass dataset classification keeping GPower at 80%. To validate the performance of the MIDNet18 CNN architecture, the medical images of two different datasets are compared with existing models like LeNet-5, VGG-16, VGG-19, ResNet-50. In multiclass classification, the MIDNet-18 architecture gives better training accuracy and test accuracy, while the LeNet5 model obtained 92.6% and 95.9%, respectively. Similarly, VGG-16 is 89.3% and 77.2% respectively; VGG-19 is 85.8% and 85.4%, respectively; ResNet50 is 90.6% and 99%, respectively. For binary classification, the MIDNet18 architecture gives better training accuracy and test accuracy, while the LeNet-5 model has obtained 52.3% and 54.3%, respectively. Similarly, VGG 16 is 50.5% and 45.6%, respectively; VGG-19 is 50.6% and 45.6%, respectively; ResNet-50 is 96.1% and 98.4%, respectively. The classified images are further predicted using detectron-2 model and the results identify abnormalities (cancer, COVID-19) with 99% accuracy. The MIDNET18 is significantly more accurate than LeNet5, VGG19, VGG16 algorithms and is marginally better than the RESNET50 algorithm for the given lung binary dataset (Bonferroni — one-way Anova and pairwise comparison of MIDNET, LeNet5, VGG19, VGG16, and RESNET 50 ([Formula: see text])). The proposed MIDNet18 model is significantly more accurate than LeNet5, VGG19, VGG16, ResNet50 algorithms in classifying the diseases for the given multiclass lung dataset (Bonferroni — one-way Anova and pairwise comparison of MIDNET18, LeNet5, VGG19, VGG16, ResNet50 ([Formula: see text])).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Novel UDL-Model for Dental Abnormality Detection from Digital Photographs;2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2024-04-04

2. OralNet: Fused Optimal Deep Features Framework for Oral Squamous Cell Carcinoma Detection;Biomolecules;2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3