Affiliation:
1. School of Electronics and Control Engineering, Chang‘an University, Xi‘an, P. R. China
2. School of Information Engineering, Chang‘an University, Xi‘an, P. R. China
Abstract
Road detection from aerial images still is a challenging task since it is heavily influenced by spectral reflectance, shadows and occlusions. In order to increase the road detection accuracy, a proposed method for road detection by GAC model with edge feature extraction and segmentation is studied in this paper. First, edge feature can be extracted using the proposed gradient magnitude with Canny operator. Then, a reconstructed gradient map is applied in watershed transformation method, which is segmented for the next initial contour. Last, with the combination of edge feature and initial contour, the boundary stopping function is applied in the GAC model. The road boundary result can be accomplished finally. Experimental results show, by comparing with other methods in [Formula: see text]-measure system, that the proposed method can achieve satisfying results.
Funder
Central University Fund in China
Science and Technology Division Program in Xi`an, China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献