Multi-Level Downsampling of Graph Signals via Improved Maximum Spanning Trees

Author:

Zheng Xianwei123ORCID,Tang Yuan Yan3,Zhou Jiantao3,Pan Jianjia3,Yang Shouzhi2,Li Youfa4,Wang Patrick S. P.5

Affiliation:

1. School of Mathematics and Big Data, Foshan University, Guangdong Foshan 528000, P. R. China

2. Department of Mathematics, Shantou University, Guangdong Shantou 515063, P. R. China

3. Department of Computer and Information Science, University of Macau, Macau 999078, P. R. China

4. College of Mathematics and Information science, Guangxi University, Nanning 530000, P. R. China

5. Northeastern University, Boston, MA 02115, USA

Abstract

Graph signal processing (GSP) is an emerging field in the signal processing community. Novel GSP-based transforms, such as graph Fourier transform and graph wavelet filter banks, have been successfully utilized in image processing and pattern recognition. As a rapidly developing research area, graph signal processing aims to extend classical signal processing techniques to signals with irregular underlying structures. One of the hot topics in GSP is to develop multi-scale transforms such that novel GSP-based techniques can be applied in image processing or other related areas. For designing graph signal multi-scale frameworks, downsampling operations that ensuring multi-level downsampling should be specifically constructed. Among the existing downsampling methods in graph signal processing, the state-of-the-art method was constructed based on the maximum spanning tree (MST). However, when using this method for multi-level downsampling of graph signals defined on unweighted densely connected graphs, such as social network data, the sampling rates are not close to [Formula: see text]. This phenomenon is summarized as a new problem and called downsampling unbalance problem in this paper. Due to the unbalance, MST-based downsampling method cannot be applied to construct graph signal multi-scale transforms. In this paper, we propose a novel and efficient method to detect and reduce the downsampling unbalance generated by the MST-based method. For any given graph signal, we apply the graph density to construct a measurement of the downsampling unbalance generated by the MST-based method. If a graph signal has large unbalance possibility, the multi-level downsampling is conducted after the MST is improved. The experimental results on synthetic and real-world social network data show that downsampling unbalance can be efficiently detected and then reduced by our method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TFA-CLSTMNN: Novel convolutional network for sound-based diagnosis of COVID-19;International Journal of Wavelets, Multiresolution and Information Processing;2022-12-19

2. Product of continuous fractional wave packet transforms;International Journal of Wavelets, Multiresolution and Information Processing;2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3