MULTIPLE CLASSIFIER SYSTEMS IN OFFLINE HANDWRITTEN WORD RECOGNITION — ON THE INFLUENCE OF TRAINING SET AND VOCABULARY SIZE

Author:

GÜNTER SIMON1,BUNKE HORST1

Affiliation:

1. Department of Computer Science, University of Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland

Abstract

Handwritten text recognition is one of the most difficult problems in the field of pattern recognition. Recently, a number of classifier creation methods, known as ensemble methods, have been proposed in the field of machine learning. It has been shown that these methods are able to substantially improve recognition performance in complex classification tasks. In this paper we examine the influence of the vocabulary size and the number of training samples on the performance of three ensemble methods in the context of handwritten word recognition. The experiments were conducted with two different offline hidden Markov model based handwritten word recognizers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A three-step unsupervised neural model for visualizing high complex dimensional spectroscopic data sets;Pattern Analysis and Applications;2010-10-12

2. Questioned Documents;Interpol's Forensic Science Review;2010-02-18

3. Combining diverse on-line and off-line systems for handwritten text line recognition;Pattern Recognition;2009-12

4. A Theoretical Analysis of Bagging as a Linear Combination of Classifiers;IEEE Transactions on Pattern Analysis and Machine Intelligence;2008-07

5. Recognition of Whiteboard Notes: Online, Offline and Combination;SER MACH PERCEPT ART;2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3