Affiliation:
1. Department of Informatics and Computer Engineering, Simon Kuznets Kharkiv National University of Economics, Nauky Avenue Science 9-A, 61166 Kharkov, Ukraine
Abstract
This paper describes the investigation results about the usage of shallow (limited by few layers only) convolutional neural networks (CNNs) to solve the video-based gender classification problem. Different architectures of shallow CNN are proposed, trained and tested using balanced and unbalanced static image datasets. The influence of diverse voting over confidences methods, applied for frame-by-frame gender classification of the video stream, is investigated for possible enhancement of the classification accuracy. The possibility of the grouping of shallow networks into ensembles is investigated; it has been shown that the accuracy may be more improved with the further voting of separate shallow CNN classification results inside an ensemble over a single frame or different ones.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献