A Novel Objective Grouping Evolutionary Algorithm for Many-Objective Optimization Problems

Author:

Guo Xiaofang1ORCID,Wang Xiaoli2

Affiliation:

1. School of Science, Xi’an Technological University, Xuefu Road, Weiyang District, Xi’an, Shaanxi, P. R. China

2. School of Computer Science and Technology, Xidian University, South Taibai Road, Xi’an, Shaanxi, P. R. China

Abstract

The thorniest difficulties for multi-objective evolutionary algorithms (MOEAs) handling many-objective optimization problems (MaOPs) are the inefficiency of selection operators and high computational cost. To alleviate such difficulties and simplify the MaOPs, objective reduction algorithms have been proposed to remove the redundant objectives during the search process. However, those algorithms can only be applicable to specific problems with redundant objectives. Worse still, the Pareto solutions obtained by reduced objective set may not be the Pareto solutions of the original MaOPs. In this paper, we present a novel objective grouping evolutionary algorithm (OGEA) for general MaOPs. First, by dividing original objective set into several overlapping lower-dimensional subsets in terms of interdependence correlation information, we aim to separate the MaOPs into a number of sub-problems so that each of them can be able to preserve as much dominance structure in the original objective set as possible. Subsequently, we employ the nondominated sorting genetic algorithm II (NSGA-II) to generate Pareto solutions. Besides, instead of nondominated sorting on the whole population, a novel dual selection mechanism is proposed to choose individuals either having high ranks in subspaces or locating sparse region in the objective space for better proximity and diversity. Finally, we compare the proposed strategy with the other two classical space partition methods on benchmark DTLZ5 (I, M), DTLZ2 and a practical engineering problem. Numerical results show the proposed objective grouping algorithm can preserve more dominance structure in original objective set and achieve better quality of Pareto solutions.

Funder

Education Department of Shaanxi Province

Xi'an Weiyang District Science and Technology Bureau

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improve Performance of Pareto Corner Search-based Objective Reduction in Many-Objective Optimization;Evolutionary Intelligence;2022-10-22

2. Radar Waveform Design Based on Multi-Agent Reinforcement Learning;International Journal of Pattern Recognition and Artificial Intelligence;2021-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3