Watermelon Ripeness Detection via Extreme Learning Machine with Kernel Principal Component Analysis Based on Acoustic Signals

Author:

Zhang Yinghao1,Deng Xiaoyan1,Xu Zhou2,Yuan Peipei3

Affiliation:

1. College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China

2. School of Computer Science, Wuhan University, Wuhan 430072, P. R. China

3. School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

Abstract

Many investigations have proved that the acoustics method is intuitive and effective for determining watermelon ripeness. The objective of this work is to drive a new robust acoustics classification scheme KPCA-ELM, which is based on the kernel principal component analysis (KPCA) and extreme learning machine (ELM). Acoustic signals are sampled by a microphone from unripe, ripe and over-ripe watermelon samples, which are randomly divided into two sample sets for training and testing. A set of basic signals is first obtained via KPCA of the training sample. Thus, any given signal can be represented as a linear combination of basis signals, and the coefficients of linear combination are extracted as the features of a signal. Corresponding to the unripe, ripe and over-ripe watermelons, a three-class ELM identification model is constructed based on the training data. The scheme presented in this paper is tested with the testing sample and an accuracy of 92% is achieved. To further evaluate the scheme performance, a comparison of ELM and SVM is conducted in terms of the classification results. The results reveal that the proposed scheme can classify faster than SVM, while ELM is better than SVM in accuracy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3