An Accelerated and Flexible SIFT Parallel-Computing Approach Based on the General Multi-Core Platform

Author:

Wang Gang12,Zhou Mingliang3ORCID,Fang Bin3,Huang Haichao4,Shu Zhenyu12,Chen Xueshu1

Affiliation:

1. School of Computing and Data Engineering, NingboTech University, Ningbo, P. R. China

2. Ningbo Institute, Zhejiang University, Ningbo, P. R. China

3. School of Computer Science, Chongqing University, Chongqing, P. R. China

4. State Grid Zhejiang Electric Power Corporation Information & Telecommunication Branch, Hangzhou, P. R. China

Abstract

Visual retrieval has been a significant technology in the computer vision task. Visual feature descriptors are the key to the visual retrieval. The famous local feature descriptor is called the Scale Invariant Feature Transform (SIFT), which can keep invariant mapping for the scale, rotate and simulate images. To utilize effectively the SIFT feature descriptor for visual matching on different hardware platforms, this paper proposes an accelerated SIFT algorithm based on the SIFT feature computing principle of the general multi-core platform. First, our multi-core task allocation method introduces the WFM theory into task assignment for each core to improve the core computing resource utilization for high-efficient parallel computing. Then, to improve the efficiency of picture matching, we introduce global geometric constraints condition to optimal picture matching for the multi-core parallelization approach. Experimental results show that the proposed approach can save on average 87.31% on the Intel X86 platform, compared to the single-core time. Also, our approach can save on average 33.79% on the Raspberry Pi platform, compared to the single-core time.

Funder

Natural Science Foundation of Chongqing

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3