Affiliation:
1. Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
Abstract
Deep learning is a popular topic among machine learning researchers nowadays, with great strides being made in recent years to develop robust artificial neural networks for faster convergence to a reasonable accuracy. Network architecture and hyperparameters of the model are fundamental aspects of model convergence. One such important parameter is the initial values of weights, also known as weight initialization. In this paper, we perform two research tasks concerned with the weights of neural networks. First, we develop three novel weight initialization algorithms inspired by the neuroscientific construction of the mammalian brains and then test them on benchmark datasets against other algorithms to compare and assess their performance. We call these algorithms the lognormal weight initialization, modified lognormal weight initialization, and skewed weight initialization. We observe from our results that these initialization algorithms provide state-of-the-art results on all of the benchmark datasets. Second, we analyze the influence of training an artificial neural network on its weight distribution by measuring the correlation between the quantitative metrics of skewness and kurtosis against the model accuracy using linear regression for different weight initializations. Results indicate a positive correlation between network accuracy and skewness of the weight distribution but no affirmative relation between accuracy and kurtosis. This analysis provides further insight into understanding the inner mechanism of neural network training using the shape of weight distribution. Overall, the works in this paper are the first of their kind in incorporating neuroscientific knowledge into the domain of artificial neural network weights.
Funder
Information and Communication Technology Division, Government of the People’s Republic of Bangladesh
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献