Affiliation:
1. Department of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, P. R. China
2. Yichun Municipal Bureau of Natural Resources, Jiangxi 336300, P. R. China
Abstract
Under the background of accelerating urbanization and increasing stress of ecological environment, the construction of livable city has attracted extensive attention and become a hot spot in the study of urban problems in the world. The evaluation of livable city is a reference for the comparison of urban development and also one of the evaluation criteria for the comparison of urban competitiveness. This paper focuses on three different evaluation factors of ecological environment, economic development and public service to construct an evaluation model of environmental quality of livable cities. Then particle swarm optimization (PSO) is introduced to optimize the parameters of support vector machine (SVM), and a SVM algorithm based on PSO (PSO-SVM) is proposed to solve the livable city evaluation model. Finally, the spatial analysis combined with ArcGIS software obtained the livable city evaluation and division results of Hunan Province. The results show that PSO-SVM algorithm is superior to SVM, BA-SVM, GA-SVM, and has the advantages of faster speed and higher classification accuracy.
Funder
Science and Technology Project of Guizhou
Natural Science Foundation of Guizhou Province in China
Training Program for High-level Innovative Talents of Guizhou
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献