Improved Particle Swarm Optimization Approach for Vibration Vision Measurement

Author:

Zhu Chunli1,Shen Yuan1,Lei Xiujun2

Affiliation:

1. AnHui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei 230601, China

2. Hefei Fuhuang Agile Device Co. Ltd., Hefei 230031, China

Abstract

Traditional template matching-based motion estimation is a popular but time-consuming method for vibration vision measurement. In this study, the particle swarm optimization (PSO) algorithm is improved to solve this time-consumption problem. The convergence speed of the algorithm is increased using the adjacent frames search method in the particle swarm initialization process. A flag array is created to avoid repeated calculation in the termination strategy. The subpixel positioning accuracy is ensured by applying the surface fitting method. The robustness of the algorithm is ensured by applying the zero-mean normalized cross correlation. Simulation results demonstrate that the average extraction error of the improved PSO algorithm is less than 1%. Compared with the commonly used three-step search algorithm, diamond search algorithm, and local search algorithm, the improved PSO algorithm consumes the least number of search points. Moreover, tests on real-world image sequences show good estimation accuracy at very low computational cost. The improved PSO algorithm proposed in this study is fast, accurate, and robust, and is suitable for plane motion estimation in vision measurement.

Funder

National Natural Science Foundation of Anhui Province

Major Science and Technology Projects of Anhui Province

Natural Science Foundation of Anhui Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3