Affiliation:
1. AnHui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei 230601, China
2. Hefei Fuhuang Agile Device Co. Ltd., Hefei 230031, China
Abstract
Traditional template matching-based motion estimation is a popular but time-consuming method for vibration vision measurement. In this study, the particle swarm optimization (PSO) algorithm is improved to solve this time-consumption problem. The convergence speed of the algorithm is increased using the adjacent frames search method in the particle swarm initialization process. A flag array is created to avoid repeated calculation in the termination strategy. The subpixel positioning accuracy is ensured by applying the surface fitting method. The robustness of the algorithm is ensured by applying the zero-mean normalized cross correlation. Simulation results demonstrate that the average extraction error of the improved PSO algorithm is less than 1%. Compared with the commonly used three-step search algorithm, diamond search algorithm, and local search algorithm, the improved PSO algorithm consumes the least number of search points. Moreover, tests on real-world image sequences show good estimation accuracy at very low computational cost. The improved PSO algorithm proposed in this study is fast, accurate, and robust, and is suitable for plane motion estimation in vision measurement.
Funder
National Natural Science Foundation of Anhui Province
Major Science and Technology Projects of Anhui Province
Natural Science Foundation of Anhui Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献