Concrete CT Image Quick Three-Dimensional Reconstruction Research

Author:

Zhao Liang1,Li Chang-Hua1,Dang Fa-Ning2,Li Chu-Jun1,Duan Zhong-Xing1

Affiliation:

1. Department of Info and Automation, Xi’an University of Architecture and Technology, Xi’an 710055, P. R. China

2. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, P. R. China

Abstract

The research of the mechanical properties of concrete, a kind of heterogeneous composite material, was previously established on basis of the mathematical model of random aggregate, which is used to study and analyze the mesoscopic damage mechanism of concrete. Although the shape and distribution of aggregate in the model built by this method are closer to the real structure of concrete, there is still a big difference between them and the real concrete specimen. In order to solve the problem of large amount of redundant computation in the CT reconstruction of full size cube space, a fast reconstruction method based on ray-casting algorithm is proposed. First, a method integrating the new bounding box technology with the plane intersection algorithm clusters were adopted to cut the body data and ray-casting effectively, and then, the polygon scanning and conversion was utilized to reduce the number of cast rays, finally, the adaptive sampling method was used to avoid repeatedly sampling same voxel so that the reconstruction efficiency of whole algorithm and the feasibility of numerical calculation can be enhanced. The experimental results demonstrate that the proposed algorithm can greatly improve the 3D rendering speed of concrete CT without affecting the image quality. It provides a more effective and reliable approach for correctly analyzing the mesoscopic damage mechanism and mechanical characteristics of concrete.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. aXonica: A support package for MRI based Neuroimaging;Biotechnology Notes;2024

2. A No-Reference Image Quality Comprehensive Assessment Method;International Journal of Pattern Recognition and Artificial Intelligence;2020-10-24

3. An Accurate Illumination Model of Machined Surface Based on Micro-Image;International Journal of Pattern Recognition and Artificial Intelligence;2019-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3