Blood Vessel Segmentation Based on the 3D Residual U-Net

Author:

Xin Mulin1ORCID,Wen Jing1ORCID,Wang Yi1,Yu Wei1,Fang Bin1,Hu Jun2,Xu Yongmei2,Linghu Chunhong2

Affiliation:

1. College of Computer Science, Chongqing University, Chongqing 401331, P. R. China

2. Southwest Hospital, Army Military Medical University, Chongqing 401331, P. R. China

Abstract

In this paper, we propose blood vessel segmentation based on the 3D residual U-Net method. First, we integrate the residual block structure into the 3D U-Net. By exploring the influence of adding residual blocks at different positions in the 3D U-Net, we establish a novel and effective 3D residual U-Net. In addition, to address the challenges of pixel imbalance, vessel boundary segmentation, and small vessel segmentation, we develop a new weighted Dice loss function with a better effect than the weighted cross-entropy loss function. When training the model, we adopted a two-stage method from coarse-to-fine. In the fine stage, a local segmentation method of 3D sliding window is added. In the model testing phase, we used the 3D fixed-point method. Furthermore, we employ the 3D morphological closed operation to smooth the surfaces of vessels and volume analysis to remove noise blocks. To verify the accuracy and stability of our method, we compare our method with FCN, 3D DenseNet, and 3D U-Net. The experimental results indicate that our method has higher accuracy and better stability than the other studied methods and that the average Dice coefficients for hepatic veins and portal veins reach 71.7% and 76.5% in the coarse stage and 72.5% and 77.2% in the fine stage, respectively. In order to verify the robustness of the model, we conducted the same comparative experiment on the brain vessel datasets, and the average Dice coefficient reached 87.2%.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HI-Net: Liver vessel segmentation with hierarchical inter-scale multi-scale feature fusion;Biomedical Signal Processing and Control;2024-10

2. Channel Correlation Distillation for Compact Semantic Segmentation;International Journal of Pattern Recognition and Artificial Intelligence;2023-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3