Cancer Prediction Using Feature Fusion and Taylor-TSA-Based GAN with Gene Expression Data

Author:

Jeyabharathi J.1ORCID,Velliangiri S.2ORCID,Joseph S. Iwin Thanakumar3ORCID,Devadass C. Sorna Chandra4ORCID

Affiliation:

1. Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Virudhunagar District, Tamil Nadu, India

2. Department of Computational Intelligence, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India

3. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522 302, Guntur District, Andhra Pradesh, India

4. Department of Civil Engineering, Jawaharlal College of Engineering and Technology, Mangalam 679301, Palakkad, Kerala, India

Abstract

This research paper develops an efficient model, named Taylor-Tunicate Swarm Algorithm-based Generative Adversarial Networks (Taylor-TSA-based GANs) for cancer prediction. The developed Taylor-TSA incorporates the Taylor series with Tunicate Swarm Algorithm (TSA) algorithm. The Yeo–Johnson (YJ) transformation is employed for the data transformation. The feature fusion is evaluated by Deep Stacked Autoencoder (Deep SAE). The fused feature is given as input to the cancer prediction done by GAN trained by Taylor-TSA. The developed model is an effective and efficient use of information with clinical data. The Taylor-TSA-based GAN is analyzed in terms of accuracy, False Positive Rate (FPR), and True Positive Rate (TPR) with the values of 0.9184, 0.1782, and 0.9246.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3