Affiliation:
1. Hangzhou Dianzi University, Hangzhou, P. R. China
Abstract
The necessary step in the diagnosis of leukemia by the attending physician is to classify the white blood cells in the bone marrow, which requires the attending physician to have a wealth of clinical experience. Now the deep learning is very suitable for the study of image recognition classification, and the effect is not good enough to directly use some famous convolution neural network (CNN) models, such as AlexNet model, GoogleNet model, and VGGFace model. In this paper, we construct a new CNN model called WBCNet model that can fully extract features of the microscopic white blood cell image by combining batch normalization algorithm, residual convolution architecture, and improved activation function. WBCNet model has 33 layers of network architecture, whose speed has greatly been improved compared with the traditional CNN model in training period, and it can quickly identify the category of white blood cell images. The accuracy rate is 77.65% for Top-1 and 98.65% for Top-5 on the training set, while 83% for Top-1 on the test set. This study can help doctors diagnose leukemia, and reduce misdiagnosis rate.
Funder
Zhejiang Provincial Technical Plan Project
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献