Weld Image Recognition Algorithm Based on Deep Learning

Author:

Li Yan1ORCID,Hu Miao2,Wang Taiyong3

Affiliation:

1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, P. R. China

2. Lingyun Industrial Corporation Limited Research and Development Center, Zhuozhou 072761, P. R. China

3. Tianjin Engineering Research of CNC Technology, Tianjin University, Tianjin 300072, P. R. China

Abstract

As an important part of metal processing, welding is widely used in industrial manufacturing activities, and its application scenarios are very extensive. Due to technical limitations, the welding process always unavoidably leaves weld defects. Weld defects are extremely hazardous, and the work used must be guaranteed to be defect-free, regardless of the field. However, manual weld inspection has subjective factors such as inefficiency and easy missed detection, and although some automatic weld inspection methods have appeared, these traditional methods still do not meet actual demand in terms of detection time and detection accuracy. Therefore, there is a need for a higher quality weld image automatic detection method to replace the manual method and the traditional automatic detection method. In view of the above, this paper proposes a weld seam image recognition algorithm based on deep learning. The Adam adaptive moment estimation algorithm is chosen as the backpropagation optimization algorithm to accelerate the training of convolutional neural networks and design an independent adaptive learning rate. Through the simulation of the collected 4500 tube images, the adaptive threshold-based method is used for weld seam extraction. The algorithm proposed in this paper is compared with the weld seam recognition method based on image texture feature value distribution (ITFVD) and the SUSAN-based weld defect target detection method. The results show that the proposed method can identify weld defects in a short time on different sizes of weld images, and can further detect the type of weld defects. In addition, the method in this paper is better than the other two methods in the false detection rate, recall rate and overall recognition accuracy, which shows that the experimental results have achieved the expected results.

Funder

The National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Welding Defect Classification Based on Lightweight CNN;International Journal of Pattern Recognition and Artificial Intelligence;2023-09-14

2. Welding Groove Edge Detection Method Using Lightweight Fusion Model Based on Transfer Learning;International Journal of Pattern Recognition and Artificial Intelligence;2023-08

3. Deep learning-based welding image recognition: A comprehensive review;Journal of Manufacturing Systems;2023-06

4. Analysis of Submerged Arc Welding (SAW) Surface Defects Using Convolutional Neural Network (CNN);Lecture Notes in Mechanical Engineering;2023

5. Design and analysis of welding inspection robot;Scientific Reports;2022-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3