Affiliation:
1. Institute of Intelligent Computing Science, Shenzhen University, Shenzhen 518060, P. R. China
2. Department of Mathematics, Harbin Institute of Technology, Weihai 264209, P. R. China
Abstract
Memristor, as the future of artificial intelligence, has been widely used in pattern recognition or signal processing from sensor arrays. Memristor-based recurrent neural network (MRNN) is an ideal model to mimic the functionalities of the human brain due to the physical properties of memristor. In this paper, the periodicity for memristor-based Cohen–Grossberg neural networks (MCGNNs) is studied. The neural network (NN) considered in this paper is based on the memristor and involves time-varying delays, distributed delays and impulsive effects. The boundedness and monotonicity of the activation function are not assumed. By some inequality technique and contraction mapping principle, we prove the existence, uniqueness and exponential stability of periodic solution for MCGNNs. Finally, some numeral examples and comparisons are provided to illustrate the validation of our results.
Funder
National Natural Science Foundation of China
Educational Commission of Guangdong Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献