Exponential Stability of Periodic Solution for Impulsive Memristor-Based Cohen–Grossberg Neural Networks with Mixed Delays

Author:

Feng Jiqiang1,Ma Qiang2,Qin Sitian2

Affiliation:

1. Institute of Intelligent Computing Science, Shenzhen University, Shenzhen 518060, P. R. China

2. Department of Mathematics, Harbin Institute of Technology, Weihai 264209, P. R. China

Abstract

Memristor, as the future of artificial intelligence, has been widely used in pattern recognition or signal processing from sensor arrays. Memristor-based recurrent neural network (MRNN) is an ideal model to mimic the functionalities of the human brain due to the physical properties of memristor. In this paper, the periodicity for memristor-based Cohen–Grossberg neural networks (MCGNNs) is studied. The neural network (NN) considered in this paper is based on the memristor and involves time-varying delays, distributed delays and impulsive effects. The boundedness and monotonicity of the activation function are not assumed. By some inequality technique and contraction mapping principle, we prove the existence, uniqueness and exponential stability of periodic solution for MCGNNs. Finally, some numeral examples and comparisons are provided to illustrate the validation of our results.

Funder

National Natural Science Foundation of China

Educational Commission of Guangdong Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3