Affiliation:
1. Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
2. Information Science Department, College of Applied Computer Science, King Saud University, Riyadh 11543, Saudi Arabia
Abstract
In this study, we propose an electrocardiogram (ECG) system for the simultaneous and remote monitoring of multiple heart patients. It consists of three main components: patient, sever, and monitoring units. The patient unit uses a wearable miniature sensor that continuously measures ECG signals and sends them to a smart mobile phone via a Bluetooth connection. In the mobile device, the ECG signals can be stored, displayed on screen, and automatically transmitted to a distant server unit over the internet; the server stores ECG data from several patients. Health care stakeholders use a monitoring unit to retrieve the ECG signals of multiple patients at any time from the server for display and real-time automatic analysis. The analysis includes segmentation of the ECG signal into separate heartbeats followed by arrhythmia detection and classification. When compared to existing real-time ECG systems, where the detection of abnormalities is usually performed using simple rules, the proposed system implements a real-time classification module that is based on a support vector machine (SVM) classifier. Extensive experimental results on ECG data obtained from a TechPatientTM simulator, a real person, and 20 records from the MIT arrhythmia database are reported and discussed.
Funder
Deanship of Scientific Research at King Saud University
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献