An Improved Artificial Neural Network Model for Flights Delay Prediction

Author:

Shi Tongyu1,Lai Jinghan1,Gu Runping1,Wei Zhiqiang1

Affiliation:

1. School of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, P. R. China

Abstract

With the limitation of air traffic and the rapid increase in the number of flights, flight delay is becoming more frequent. Flight delay leads to financial and time losses for passengers and increases operating costs for airlines. Therefore, the establishment of an accurate prediction model for flight delay becomes vital to build an efficient airline transportation system. The air transportation system has a huge amount of data and complex operation modes, which is suitable for analysis by using machine learning methods. This paper discusses the factors that may affect the flight delay, and presents a new flight delay prediction model. The five warning levels are defined based on flight delay database by using K-means clustering algorithm. After extracting the key factors related to flight operation by the grey relational analysis (GRA) algorithm, an improved machine learning algorithm called GRA — Genetic algorithm (GA) — back propagation neural network, GRA-GA-BP, is introduced, which is optimized by GA. The calculation results show that, compared with models before optimization and other two algorithms in previous papers, the proposed prediction model based on GRA-GA-BP algorithm shows a higher prediction accuracy and more stability. In terms of operation efficiency and memory consumption, it also has good performance. The analysis presented in this paper indicates that this model can provide effective early warnings for flight delay, and can help airlines to intervene in flights with abnormal trend in advance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3