Affiliation:
1. School of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, P. R. China
Abstract
With the limitation of air traffic and the rapid increase in the number of flights, flight delay is becoming more frequent. Flight delay leads to financial and time losses for passengers and increases operating costs for airlines. Therefore, the establishment of an accurate prediction model for flight delay becomes vital to build an efficient airline transportation system. The air transportation system has a huge amount of data and complex operation modes, which is suitable for analysis by using machine learning methods. This paper discusses the factors that may affect the flight delay, and presents a new flight delay prediction model. The five warning levels are defined based on flight delay database by using K-means clustering algorithm. After extracting the key factors related to flight operation by the grey relational analysis (GRA) algorithm, an improved machine learning algorithm called GRA — Genetic algorithm (GA) — back propagation neural network, GRA-GA-BP, is introduced, which is optimized by GA. The calculation results show that, compared with models before optimization and other two algorithms in previous papers, the proposed prediction model based on GRA-GA-BP algorithm shows a higher prediction accuracy and more stability. In terms of operation efficiency and memory consumption, it also has good performance. The analysis presented in this paper indicates that this model can provide effective early warnings for flight delay, and can help airlines to intervene in flights with abnormal trend in advance.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献