Health Assessment Methods for Wind Turbines Based on Power Prediction and Mahalanobis Distance

Author:

Zhan Jun12ORCID,Wang Ronglin3,Yi Lingzhi4,Wang Yaguo5,Xie Zhengjuan6

Affiliation:

1. Hunan Ulitech Automation System Co., Ltd., Chansha, P. R. China

2. New Tech Open Lab for Windpower, HuNan 410005, P. R. China

3. Central South University of Forestry and Technology, HuNan 410004, P. R. China

4. College of Information Engineering, Xiangtan University, Xiangtan 411105, Hunan, P. R. China

5. Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China

6. Changsha Technology Research Institute of Beidou Industry Safety, HuNan 410005, P. R. China

Abstract

The output power of wind turbine has great relation with its health state, and the health status assessment for wind turbines influences operational maintenance and economic benefit of wind farm. Aiming at the current problem that the health status for the whole machine in wind farm is hard to get accurately, in this paper, we propose a health status assessment method in order to assess and predict the health status of the whole wind turbine, which is based on the power prediction and Mahalanobis distance (MD). Firstly, on the basis of Bates theory, the scientific analysis for historical data from SCADA system in wind farm explains the relation between wind power and running states of wind turbines. Secondly, the active power prediction model is utilized to obtain the power forecasting value under the health status of wind turbines. And the difference between the forecasting value and actual value constructs the standard residual set which is seen as the benchmark of health status assessment for wind turbines. In the process of assessment, the test set residual is gained by network model. The MD is calculated by the test residual set and normal residual set and then normalized as the health status assessment value of wind turbines. This method innovatively constructs evaluation index which can reflect the electricity generating performance of wind turbines rapidly and precisely. So it effectively avoids the defect that the existing methods are generally and easily influenced by subjective consciousness. Finally, SCADA system data in one wind farm of Fujian province has been used to verify this method. The results indicate that this new method can make effective assessment for the health status variation trend of wind turbines and provide new means for fault warning of wind turbines.

Funder

National Natural Science Foundation of China

Hunan province Natural science Zhuzhou United foundation

Doctoral research project of Hunan Province

Product-Study-Research project of Hunan province

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3