A Trajectory-Based Method for Dynamic Scene Recognition

Author:

Peng Xiaoming12,Bouzerdoum Abdesselam13,Phung Son Lam1

Affiliation:

1. School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, New South Wales 2500, Australia

2. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P. R. China

3. College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

Abstract

Existing methods for dynamic scene recognition mostly use global features extracted from the entire video frame or a video segment. In this paper, a trajectory-based dynamic scene recognition method is proposed. A trajectory is formed by a pixel moving across consecutive frames of a video segment. The local regions surrounding the trajectory provide useful appearance and motion information about a portion of the video segment. The proposed method works at several stages. First, dense and evenly distributed trajectories are extracted from a video segment. Then, the fully-connected-layer features are extracted from each trajectory using a pre-trained Convolutional Neural Networks (CNNs) model, forming a feature sequence. Next, these feature sequences are fed into a Long-Short-Term-Memory (LSTM) network to learn their temporal behavior. Finally, by aggregating the information of the trajectories, a global representation of the video segment can be obtained for classification purposes. The LSTM is trained using synthetic trajectory feature sequences instead of real ones. The synthetic feature sequences are generated with a series of generative adversarial networks (GANs). In addition to classification, category-specific discriminative trajectories are located in a video segment, which help reveal what portions of a video segment are more important than others. This is achieved by formulating an optimization problem to learn discriminative part detectors for all categories simultaneously. Experimental results on two benchmark dynamic scene datasets show that the proposed method is very competitive with six other methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SeaDSC: A Video-Based Unsupervised Method for Dynamic Scene Change Detection in Unmanned Surface Vehicles;2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW);2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3