Anomaly Detection for Industrial Control Networks Based on Improved One-Class Support Vector Machine

Author:

Qu Haicheng1,Zhou Jianzhong1ORCID,Qin Jitao1,Tian Xiaorong1

Affiliation:

1. Institute of Software, Liaoning Technical University, Huludao 125105, P. R. China

Abstract

In traditional network anomaly detection algorithms, the anomaly threshold needs to be defined manually. Keeping this as background, this study proposes an anomaly detection algorithm (VAEOCSVM), which combines the variable auto-encoder (VAE) and one-class support vector machine (OCSVM) to realize anomaly detection in industrial control networks. First, the VAE model is used to obtain the distribution of the original normal sample data represented by the low-dimensional code; the reconstruction error of the VAE model is merged into the new input. Then, using OCSVM’s hinge-loss objective function and the random Fourier feature fitting radial basis function (RBF) kernel method, the OCSVM model is represented and solved using the deep neural network and gradient descent method. Finally, the decision function of the OCSVM model is constructed by using the solved parameter information to realize the detection of abnormal data. The proposed algorithm is compared with other machine-learning-based anomaly detection algorithms in terms of multiple indicators such as precision, recall, and [Formula: see text] score. The experimental results using various datasets show that the proposed algorithm has a better outlier recognition ability than the machine-learning-based anomaly detection algorithms.

Funder

Liaoning Natural Fund General Project

Liaoning Provincial Natural Science Foundation Plan Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3