Structure Feature Learning Method for Incomplete Data

Author:

Zhou Xiabing12,Xing Xingxing1,Han Lei3,Hong Haikun1,Bian Kaigui1,Xie Kunqing1

Affiliation:

1. Key Laboratory of Machine Perception, Ministry of Education, Peking University, Beijing, 100871, P. R. China

2. Institute of Automation, Chinese Academy of Sciences, P. R. China

3. 486 Hill Center, Piscataway, NJ, 08854, Rutgers University, USA

Abstract

Learning with incomplete data remains challenging in many real-world applications especially when the data is high-dimensional and dynamic. Many imputation-based algorithms have been proposed to handle with incomplete data, where these algorithms use statistics of the historical information to remedy the missing parts. However, these methods merely use the structural information existing in the data, which are very helpful for sharing between the complete entries and the missing ones. For example, in traffic system, some group information and temporal smoothness exist in the data structure. In this paper, we propose to incorporate these structural information and develop structural feature leaning method for learning with incomplete data (SFLIC). The SFLIC model adopt a fused Lasso based regularizer and a group Lasso style regularizer to enlarge the data sharing along both the temporal smoothness level and the feature group level to fill the gap where the data entries are missing. The proposed SFLIC model is a nonsmooth function according to the model parameters, and we adopt the smoothing proximal gradient (SPG) method to seek for an efficient solution. We evaluate our model on both synthetic and real-world highway traffic datasets. Experimental results show that our method outperforms the state-of-the-art methods.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shale Crack Identification Based on Acoustic Emission Experiment and Wavenet Data Recovery;International Journal of Applied Mechanics;2022-12

2. Field Weights Computation for Probabilistic Record Linkage in Presence of Missing Data;International Journal of Pattern Recognition and Artificial Intelligence;2020-04-30

3. Approximation of Unknown Multivariate Probability Distributions by Using Mixtures of Product Components: A Tutorial;International Journal of Pattern Recognition and Artificial Intelligence;2017-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3