Counting with Self-Weighted Multi-Scale Fusion Networks

Author:

Xiong Xin1,Shen Jie1,Li Ying1,He Wei1,Li Peng1,Yan Wenjie1

Affiliation:

1. University of Electronic Science and Technology of China, Chengdu, P. R. China

Abstract

Because of the large-scale variation, counting in scenes of different densities is an extremely difficult task. In this paper, based on the attention mechanism, we propose a new self-weighted multi-scale fusion network structure named SMFNet to solve the problem of multi-scale changes and can significantly improve the effect of crowd counting in monitoring scene. The proposed SMFNet uses VGG as the backbone network to extract multi-scale features, uses a SMFNet as the neck to fuse multiple-scale features, and uses the atrous spatial pyramid pooling (ASPP) network and ordinary convolution as the head to generate both the attention map and the density map. The attention map highlighting crowd regions in the image contributes to a high-quality density map, and the density map records the crowd distribution. The number of crowd in the image can be obtained by summing the pixel values of the density map. We conduct experiments on three crowd counting datasets and one vehicle counting dataset to show that our proposed SMFNet can improve the state-of-the-art counting methods.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3