Affiliation:
1. School of Economics and Trade, Fujian Jiangxia University, Fuzhou, Fujian, P. R. China
Abstract
In order to effectively improve the accuracy of Consumer Price Index (CPI) prediction so as to more truly reflect the overall level of the country’s macroeconomic situation, a CPI big data prediction method based on wavelet twin support vector machine (SVM) is proposed. First, the historical CPI data are decomposed into high-frequency part and low-frequency part by wavelet transform. Then a more advanced twin SVM is used to build a prediction model to obtain two kinds of prediction results. Finally, the wavelet reconstruction method is used to fuse the two kinds of prediction results to obtain the final CPI prediction results. The wavelet twin SVM model is used to fit and predict CPI index. Experimental results show that compared with the similar prediction methods, the proposed prediction method has higher fitting accuracy and smaller root mean square error.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献