IMPACT OF FULL RANK PRINCIPAL COMPONENT ANALYSIS ON CLASSIFICATION ALGORITHMS FOR FACE RECOGNITION

Author:

SONG FENGXI12,YOU JANE1,ZHANG DAVID1,XU YONG3

Affiliation:

1. Department of Computing, Hong Kong Polytechnic University, Hong Kong

2. Department of Automation, New Star Research Inst. of Applied Tech. in Hefei City Hefei, P. R. China

3. Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, P. R. China

Abstract

Full rank principal component analysis (FR-PCA) is a special form of principal component analysis (PCA) which retains all nonzero components of PCA. Generally speaking, it is hard to estimate how the accuracy of a classifier will change after data are compressed by PCA. However, this paper reveals an interesting fact that the transformation by FR-PCA does not change the accuracy of many well-known classification algorithms. It predicates that people can safely use FR-PCA as a preprocessing tool to compress high-dimensional data without deteriorating the accuracies of these classifiers. The main contribution of the paper is that it theoretically proves that the transformation by FR-PCA does not change accuracies of the k nearest neighbor, the minimum distance, support vector machine, large margin linear projection, and maximum scatter difference classifiers. In addition, through extensive experimental studies conducted on several benchmark face image databases, this paper demonstrates that FR-PCA can greatly promote the efficiencies of above-mentioned five classification algorithms in appearance-based face recognition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collaborative Clustering: New Perspective to Rank Factor Granules;Studies in Computational Intelligence;2018

2. Rank Factor Granules with Fuzzy Collaborative Clustering and Factor Space Theory;International Journal of Pattern Recognition and Artificial Intelligence;2017-03-30

3. Divide-and-conquer approach for solving singular value decomposition based on MapReduce;Concurrency and Computation: Practice and Experience;2014-11-28

4. NUMERICAL ANALYSIS AND COMPARISON OF SPECTRAL DECOMPOSITION METHODS IN BIOMETRIC APPLICATIONS;International Journal of Pattern Recognition and Artificial Intelligence;2014-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3