Large-Scale Local Online Similarity/Distance Learning Framework Based on Passive/Aggressive

Author:

Hamdan Baida1,Zabihzadeh Davood2ORCID

Affiliation:

1. Department of Computer Science, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

2. Department of Computer Engineering, Hakim Sabzevari University, Sabzevar, Iran

Abstract

Similarity/distance measures play a key role in many machine learning, pattern recognition, and data mining algorithms, which leads to the emergence of the metric learning field. Many metric learning algorithms learn a global distance function from data that satisfies the constraints of the problem. However, in many real-world datasets, where the discrimination power of features varies in the different regions of input space, a global metric is often unable to capture the complexity of the task. To address this challenge, local metric learning methods are proposed which learn multiple metrics across the different regions of the input space. Some advantages of these methods include high flexibility and learning a nonlinear mapping, but they typically achieve at the expense of higher time requirements and overfitting problems. To overcome these challenges, this research presents an online multiple metric learning framework. Each metric in the proposed framework is composed of a global and a local component learned simultaneously. Adding a global component to a local metric efficiently reduces the problem of overfitting. The proposed framework is also scalable with both sample size and the dimension of input data. To the best of our knowledge, this is the first local online similarity/distance learning framework based on Passive/Aggressive (PA). In addition, for scalability with the dimension of input data, Dual Random Projection (DRP) is extended for local online learning in the present work. It enables our methods to run efficiently on high-dimensional datasets while maintaining their predictive performance. The proposed framework provides a straightforward local extension to any global online similarity/distance learning algorithm based on PA. Experimental results on some challenging datasets from machine vision community confirm that the extended methods considerably enhance the performance of the related global ones without increasing the time complexity.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3