AIMHNet: An Attribute-Insensitive Multiscale Hourglass Network for Rain Streak and Raindrop Removal

Author:

Zhao Ruini1ORCID,Han Yi1ORCID,Kang Nan1ORCID,Zhao Jian2ORCID,Cui Yang1ORCID

Affiliation:

1. School of Automobile, Chang’an University, Xi’an, Shaanxi 710064, P. R. China

2. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P. R. China

Abstract

CNN-based methods have made great progress in single-image rain removal. Most recent methods improve performance by increasing the depth of the network. To fully extract local and global features while reducing inference time, we propose a top-to-down attribute-insensitive multiscale hourglass network for rain streak and raindrop removal. For the rain removal task, we expect that the constructed network can accurately identify the various attributes of the rain information characteristics of the small target. Considering the difference in the size, shape, direction and density of rain streak and raindrop, inspired by the performance of hourglass architecture to capture multiscale features in human pose estimation, we introduce an attribute-insensitive hourglass module to recognize the attributes of rain streak and raindrop in a unified framework. This feature extraction module could capture the characteristics of rain streak and raindrop with different attributes. This stacked hourglass blocks down-sample features and then up-samples them back to the original resolution based on discrete wavelet transform and inverse discrete wavelet transform. We perform extensive experiments on five synthetic and real-world de-raining datasets to validate the effectiveness of our proposed network on rain streak and raindrop removal. The qualitative and quantitative results show that our method is suitable for removing rain streak and raindrop in a unified framework. We present the results of generalization and ablation study for key components, we also report the accuracy of semantic segmentation after preprocessing with all rain removal methods. Our source code will be available on the GitHub: https://github.com/Ruini94/AIMHNet .

Funder

National Key Research and Development Program of China

Shaanxi Province Qin Chuang Yuan “Scientists+Engineer” Team Construction Project

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3