3D Face Detection via Reconstruction Over Hierarchical Features for Single Face Situations

Author:

Yu Bo12,Lane Ian2,Chen Fang13

Affiliation:

1. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, P. R. China

2. Carnegie Mellon University, NASA Research Park #23, Moffett Field, CA 94043, USA

3. Hainan Key Laboratory of Earth Observation, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Sanya 572029, P. R. China

Abstract

There are multiple challenges in face detection, including illumination conditions and diverse poses of the user. Prior works tend to detect faces by segmentation at pixel level, which are generally not computationally efficient. When people are sitting in the car, which can be regarded as single face situations, most face detectors fail to detect faces under various poses and illumination conditions. In this paper, we propose a simple but efficient approach for single face detection. We train a deep learning model that reconstructs face directly from input image by removing background and synthesizing 3D data for only the face region. We apply the proposed model to two public 3D face datasets, and obtain significant improvements in false rejection rate (FRR) of 4.6% (from 4.6% to 0.0%) and 21.7% (from 30.2% to 8.5%), respectively, compared with state-of-art performances in two datasets. Furthermore, we show that our reconstruction approach can be applied using 1/2 the time of a widely used real-time face detector. These results demonstrate that the proposed Reconstruction ConNet (RN) is both more accurate and efficient for real-time face detection than prior works.

Funder

Hundred Talents Program of Chinese Academy of Sciences

Comparative Study on Global Environmental Change Using Remote Sensing Technology

National Natural Science Foundation of Major International (regional) Collaborative Research Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3