Affiliation:
1. Department of Computer Science and Engineering, Southern Methodist University, Dallas, TX 75275-0122, USA
Abstract
This paper presents a novel methodology of disambiguating prepositional phrase attachments. We create patterns of attachments by classifying a collection of prepositional relations derived from Treebank parses. As a by-product, the arguments of every prepositional relation are semantically disambiguated. Attachment decisions are generated as the result of a learning process, that builds upon some of the most popular current statistical and machine learning techniques. We have tested this methodology on (1) Wall Street Journal articles, (2) textual definitions of concepts from a dictionary and (3) an ad hoc corpus of Web documents, used for conceptual indexing and information extraction.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献