Attribute-Guided Global and Part-Level Identity Network for Person Re-Identification

Author:

Pan Shaoming1,Feng Wenqiang1ORCID,Chong Yanwen1ORCID

Affiliation:

1. Wuhan University, State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, 129 Luoyu Road, Wuhan 430079, P. R. China

Abstract

Most of the person re-identification (re-ID) algorithms based on deep learning mainly learn the global feature representation of pedestrians, while ignoring the important role of fine-grained pedestrian attribute features on re-ID tasks. Pedestrian attributes are middle-level semantic features, which have invariance in different poses, camera views, and illumination conditions. Considering the robustness and promotion of pedestrian attributes for person re-ID task, we propose an Attribute-guided Global and Part-level identity Network (AGPNet), which consists of a global identity task, a part-level identity task, and a pedestrian attributes learning task. AGPNet takes advantage of perceived semantic information of pedestrian attributes and deploys them as guidance to attend to human body regions and learn robust feature representation in the feature representation construction stage. Extensive experiments on two large-scale person re-ID datasets (Market-1501 and DukeMTMC-reID) show the effectiveness of our method, which is competitive with the state-of-the-art algorithms.

Funder

National Science Foundation for China LIESMARS Special Research Funding

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3