Lightweight Hardware Architecture for Object Detection in Driver Assistance Systems

Author:

Vaidya Bhaumik1ORCID,Paunwala Chirag2

Affiliation:

1. Gujarat Technological University, Ahmedabad, India

2. Electronics and Communication Department, Sarvajanik College of Engineering and Technology, Surat, India

Abstract

Object detection on hardware platforms plays a very significant role in developing driver assistance systems (DASs) with limited computational resources. Object detection for DAS is a multiclass detection problem that involves detecting various objects like cars, auto, traffic lights, bicycles, pedestrians, etc. DAS also requires accuracy, speed, and sensitivity for detecting these objects in various challenging conditions. The lighting and weather conditions pose a serious challenge for accurate object detection for DAS. This paper proposes a speed-efficient and lightweight fully convolutional neural network (CNN) architecture for object detection in adverse rainy conditions. The proposed architecture uses a CNN-based deraining network with a custom SSIM loss function in the object detection pipeline, which can give an accurate performance using limited computational and memory resources. The object detection architecture contains some architectural modifications to the existing single shot multibox detector (SSD) architecture to make it more hardware efficient and improve accuracy on small objects. It uses a trainable color transformation module using [Formula: see text] convolutions for handling the adverse lighting conditions encountered in DAS. The architecture uses feature fusion and the dilated convolution approach to enhance the accuracy of the proposed architecture on small objects. The datasets available for object detection in DAS are very imbalanced with cars as a predominant object. The class weight penalization technique is used to improve the performance of the architecture on scarcely present objects. The performance of the architecture is evaluated on well-known datasets like Kitti, Udacity, Indian Driving Dataset (IDD), and DAWN. The architecture achieves satisfactory performance in terms of mean average precision (mAP) and detection time on all these datasets. It requires three times fewer hardware resources compared to existing architectures. The lightweight nature of the proposed architecture and modification of CNN architecture with TensorRT allow the efficient implementation on the jetson nanohardware platform for prototyping, which can be integrated with other intelligent transportation systems.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3