Affiliation:
1. Department of Computer Science, University of Pretoria, South Africa
2. Computer Engineering Department, Kuwait University, Kuwait
Abstract
An image clustering method that is based on the particle swarm optimizer (PSO) is developed in this paper. The algorithm finds the centroids of a user specified number of clusters, where each cluster groups together with similar image primitives. To illustrate its wide applicability, the proposed image classifier has been applied to synthetic, MRI and satellite images. Experimental results show that the PSO image classifier performs better than state-of-the-art image classifiers (namely, K-means, Fuzzy C-means, K-Harmonic means and Genetic Algorithms) in all measured criteria. The influence of different values of PSO control parameters on performance is also illustrated.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
181 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献