OIPNet: Multimodal Network with Orthogonal Information Processing for Semantic Segmentation in Indoor Scenes

Author:

Ye Mengting1,Yu Kaili1ORCID,Chen Zhenxue12ORCID,Guo Yixin1ORCID,Liu Longcheng1ORCID

Affiliation:

1. School of Control Science and Engineering, Shandong University, Jinan 250061, P. R. China

2. Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Jinan 250061, P. R. China

Abstract

Semantic segmentation in indoor environments is a crucial task for artificial intelligence-driven visual robotics, enabling pixel-level classification results to facilitate robot path planning. Inspired by the success of multimodal models, we propose an end-to-end multimodal semantic segmentation model for image segmentation tasks in indoor scenes, which we call OIPNet. We design the OIP module to enhance the network’s ability to extract global information and enable information interaction in different directions. We have validated on NYUv2 and Sun RGB-D datasets, and the experiments show the generality and effectiveness of the proposed model. Our code is available at https://github.com/Mantee0810/OIP .

Funder

Key R&D Project of Shandong Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3