A Novel SDMFO-MBSVM-Based Segmentation and Classification Framework for Glaucoma Detection Using OCT and Fundus Images

Author:

Rayavel P.1ORCID,Murukesh C.2

Affiliation:

1. Department of Computer Science and Engineering, Sri Sairam Institute of Technology, Chennai, India

2. Velammal Engineering College, Chennai, India

Abstract

Glaucoma is an eye disease that causes loss of vision and blindness by damaging a nerve in the back of the eye called optic nerve. The optic nerve collects the visual information from the eyes and transmits to the brain. Glaucoma is mainly caused by an abnormal high pressure in the eyes. Over time, the increased pressure can erode the tissues of optic nerve, leading to vision loss or blindness. If it is diagnosed in advance, then only it can prevent the vision loss. To diagnose the glaucoma, it must accurately differentiate between the optic disc (OD), optic cup (OC), and the retinal nerve fiber layer (RNFL). The segmentation of the OD, OC, and RNFL remains a challenging issue under a minimum contrast image of boundaries. Therefore, in this study, an innovative method of Hybrid Symbiotic Differential Evolution Moth-Flame Optimization (SDMFO)-Multi-Boost Ensemble and Support Vector Machine (MBSVM)-based segmentation and classification framework is proposed for accurately detecting the glaucoma disease. By using Group Search Optimizer (GSO), the affected parts of the OD, OC and RNFL are segmented. The proposed SDMFO-MBSVM method is executed in MATLAB site, its performance is analyzed with three existing methods. From the comparison, the accuracy of the proposed method in OD segmentation gives better results of 3.37%, 4.54% and 2.22%, OC segmentation gives better results of 2.22%, 3.37% and 4.54%, and RNFL segmentation gives the better results of 3.37%, 97.21% and 5.74%.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3