Affiliation:
1. Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, Taichung, Taiwan, R.O.C.
Abstract
This study aims to detect objects quickly and accurately and then start the necessary obstacle avoidance procedure when the uncrewed vessel is at sea. This study uses a multivariate convolutional neural network (CNN) to perform automatic object detection and direction prediction for uncrewed vessels. This study is divided into three parts for processing. The first part of this process uses camera calibration technology to correct the image. Discrete cosine transform (DCT) is then used to detect sea level. Finally, this study uses Kalman filtering and affine transformation to stabilize images taken by uncrewed vessels at sea. The second part of the processing system uses a CNN to detect sea objects automatically. The third part of the process uses the dual-lens camera installed on the vessel to detect the distance and direction of objects at sea. In the experiment, the detection rate can reach more than 91% in this study method. In the experiment on image stabilization, this study’s method can also effectively improve video instability. In the experiment involving the distance and direction of the object, the experimental results show that the distance and direction of the object obtained by this study method have a distance error value of less than 10%, and the prediction results have a good effect no matter whether the object is at a short or long distance. It is hoped that this paper’s method can be applied to the automatic obstacle avoidance of unmanned vessels.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献