A Combined Back and Foreground-Based Stereo Matching Algorithm Using Belief Propagation and Self-Adapting Dissimilarity Measure

Author:

Wang Xiaofeng1,Su Yingying2,Tang Liming3,Tan Jie1

Affiliation:

1. College of Mathematical and Physical Sciences, Chongqing University of Science and Technology, Chongqing 401331, P. R. China

2. College of Electrical and Information Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China

3. School of Science, Hubei University for Nationalities, Enshi 445000, P. R. China

Abstract

Belief propagation (BP) algorithm still exists some shortages, such as inaccurate edge preservation and ambiguous detail information in the foreground, while self-adapting dissimilarity measure (SDM) also exists some shortages, such as ill textureless and occluded information in the background. To address these problems, we present a novel stereo matching algorithm fusing BP and SDM with an excellent background and foreground information. Lots of experiments show that BP and SDM can complement each other. BP algorithm can hold the better background information due to message propagation inference, whereas SDM can possess the better foreground information due to detail treatment. Therefore, a piecewise function is proposed, which can combine BP algorithm in an excellent background information and SDM in the foreground information, and greatly improve the disparity effect as a whole. We also expect that this work can attract more attention on combination of local methods and global methods, due to its simplicity, efficiency, and accuracy. Experimental results show that the proposed method can keep the superior performance and hold better background and foreground on the Middlebury datasets, compared to BP and SDM.

Funder

Natural Science Foundation of Hubei Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3