Online Detecting of Inter-Turn Short-Circuit in Generator Rotor Winding Relying on ν-SVR Machine

Author:

Pan Feng12,Guo Xiansheng2,Pan Shengwang1

Affiliation:

1. School of Architecture and Civil Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, P. R. China

2. Department of Information and Communication Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue Hi Tech Zone (West Zone) Chengdu 611731, P. R. China

Abstract

To probe an accurate diagnosing approach for synchronous generator (SG) with rotor winding inter-turn short-circuit, a novel online monitoring and detecting method relying on the [Formula: see text]-support vector regression ([Formula: see text]-SVR) machine was proposed, and its effectiveness was further verified by the micro-synchronous generator dynamic simulation. Terminal voltage, active and reactive power of SG were selected as input variables for a novel prediction model based on the [Formula: see text]-SVR, and field current was selected as an output variable of the prediction model. The structures and parameters of the field current prediction model were optimized with the particle swarm optimization (PSO) algorithm and training samples, then the prediction model was established and the field current prediction got under way. By comparing the predicted field current with the corresponding online measured field current, inter-turn short-circuit of rotor winding in SG could be detected sensitively once its absolute value of the prediction relative error exceeded a specific threshold. The micro-synchronous generator dynamic simulation indicated that the proposed online detecting approach based on the [Formula: see text]-SVR machine overcame the shortage of the back-propagation (BP) diagnosis method for misdiagnosis, and its accuracy, sensitivity and threshold setting range of the diagnosis method was the most prominent among these diagnosis methods such as the BP diagnosis method, the Bayesian regularization back-propagation (BRBP) diagnosis method and the [Formula: see text]-support vector regression ([Formula: see text]-SVR) diagnosis method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3