Enhanced Lithium-Ion Battery SOH Estimation Using Bayesian-Optimized CNN Deep Learning Approach

Author:

Huang Xiaorong1,Wei Jionghui1,Huang Jieming1,Zhang Qingbo1,Zhong Rongfu1,Lai Rijing1

Affiliation:

1. Dongguan Power Supply Bureau of Guangdong Power Grid Corporation, Dongguan, Guangdong, P. R. China

Abstract

The accurate health status evaluation of lithium-ion batteries is crucial for preemptive identification of potential battery failures and averting hazardous incidents, given its essential role in indicating the extent of battery degradation. The challenge in determining the State of Health (SOH) arises from the absence of a precise and standardized definition, as well as the difficulty in measuring essential input variables. Therefore, this paper utilizes current and voltage data during the charge and discharge process as direct inputs for SOH estimation and proposes a deep learning-based lithium-ion battery SOH estimation approach. Specifically, it leverages Bayesian optimized Convolutional Neural Network (CNN) within a data-driven framework. Experimental results demonstrate that the proposed deep learning method achieves a Mean Absolute Error (MAE) of 1% and a Maximum Error (MAX) below 4% in estimation accuracy, highlighting its enhanced precision and robustness.

Funder

Southern Power Grid Corporation of Science and Technology Project

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3