Enhancing the Performance of YYC Algorithm Useful to Generate Irreducible Testors

Author:

Piza-Davila Ivan1,Sanchez-Diaz Guillermo2,Lazo-Cortes Manuel S.3,Noyola-Medrano Cristina2

Affiliation:

1. Instituto Tecnologico y de Estudios Superiores de Occidente, Periferico Sur Manuel Gomez Morin 8585, Tlaquepaque, Jalisco 45604, Mexico

2. Facultad de Ingenieria, Universidad Autonoma de San Luis Potosi, Dr. Manuel Nava 8, San Luis Potosi, SLP 78290, Mexico

3. Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840, Mexico

Abstract

In pattern recognition, irreducible testors have been used for feature selection. A number of exhaustive algorithms that find irreducible testors have been reported in the literature. One of the latest and more efficient algorithms reported is YYC, an incremental algorithm that finds all the irreducible testors from a training matrix. Its efficiency relies on building a smaller number of feature combinations by finding compatible sets from the top of the matrix to the current row. Nevertheless, as the number of sets currently found grows, YYC execution becomes too slow. This work proposes two improvements of YYC algorithm, incorporated in a pre-processing phase; additionally, a parallel version is implemented. The paper presents some experimental results using synthetic and real data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Parallel Approach for RegularSearch Algorithm;Progress in Artificial Intelligence and Pattern Recognition;2023-12-20

2. RegularSearch, a fast performance algorithm for typical testors computation;Information Sciences;2023-11

3. Adding Learning Capabilities to the LEX Algorithm for Computing Minimal Transversals;Computación y Sistemas;2023-06-26

4. A review of algorithms to computing irreducible testors applied to feature selection;Artificial Intelligence Review;2022-03-15

5. Taking Advantage of Typical Testor Algorithms for Computing Non-reducible Descriptors;Proceedings of the 11th International Conference on Pattern Recognition Applications and Methods;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3